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Abstract—This work proposes TinyDL, an automated end-
to-end framework that aims to integrate the state-of-the-art
Deep Learning (DL) models into embedded systems. TinyDL
enables efficient training and execution of DL models as data
is collected over time while adhering to the underlying physical
resources and constraints. The constraints can be characterized
in terms of memory bandwidth, energy resources (e.g., battery
life), and/or real-time requirement. TinyDL takes advantage of
platform profiling to abstract the physical characteristics of
the target embedded device. We introduce a platform-aware
signal transformation methodology to enable DL training and
execution within the confine of the available resources. Our
approach balances the trade-off between data movements and
computations to improve the performance of costly iterative DL
training/execution. Proof-of-concept implementation on NVIDIA
Jetson TK1 embedded platform demonstrates up to two orders of
magnitude energy improvement over the previous DL solutions,
none of which had been amenable to constrained devices.

I. INTRODUCTION

Sensor data has become an indisputable part of modern dig-
ital era that is changing the way people live and interact. The
driving force behind several innovative sensing applications
is the use of machine learning algorithms to infer behaviors
and contexts from sensor data collected on portable devices.
Inferring complex user behaviors from sensor measurements
under real-world conditions, however, still remains brittle and
unreliable. This, in turn, is acting as a bottleneck to sensing
application’s development, and makes it necessary to go be-
yond traditional linear or polynomial learning approaches to
effectively model user behaviors.

Deep Learning (DL) is an emerging field of machine learn-
ing that has poised itself as the state-of-the-art approach in
delivering robust and highly accurate inference in different
learning domains [1]. Inspired by neural activities in the brain,
deep learning models data through several successive layers
of complex and non-linear features. As such, DL has the
potential to overcome the challenges associated with noisy
measurements, uncontrolled device positions, and intra-class
diversity (e.g., the difference in data generated by diverse
user populations) in sensing applications. While the nonlinear
and sophisticated nature of DL empowers it to achieve ex-
traordinary inference accuracy, it also brings new challenges
concerning its scalability and resource utilization.

Given the rich set of embedded sensors in today’s robots,
mobile and wearable devices (e.g., accelerometers, gyroscopes,
microphones, and cameras), and the great promise of deep
learning, the ability to locally learn and infer sensing data
undoubtedly provides a paradigm shift across a variety of
domains, including health care, social networks, environmental
monitoring, and transportation. There are several advantages

in devising resource-efficient DL techniques that can be inde-
pendently implemented on portable platforms: (i) Accessing
the remote cloud servers is not always a possibility and even
if so, it can be undesirably costly, specially since the DL
model has to be continuously updated as new on-chip data is
collected. (ii) Offloading data to the cloud brings major privacy
concerns, particularly as many sensing data can reveal personal
and private user information. (iii) Reducing the overhead
of DL training and execution enables investigating several
configurations of the acquired models which, in turn, leads
to a more accurate inference.

This paper proposes TinyDL, a novel end-to-end framework
which enables the first performance-efficient realization of
deep learning on resource-constrained portable devices. The
core of TinyDL framework is a new resource-aware signal
transformation approach that adaptively maps the stream of
input data to a corresponding ensemble of lower-dimensional
subspaces. The dimensionality of input samples of a DL model
has a direct impact on the overall size of the neural network,
which subsequently dictates resource utilization for training
and execution of DL models. The resource utilization can be
characterized in terms of runtime, power, energy, and memory.
Our signal transformation yields significant network com-
paction in accordance to the underlying resource provisioning
while minimally affecting the inference accuracy.

TinyDL signal transformation is an adaptive pre-processing
step that is amenable to large dynamic datasets. It works by
factorizing the raw data matrix into a dictionary matrix D that
includes a set of samples carefully selected from the input
data, and a block-sparse coefficient matrix C' where the blocks
are organized such that the subsequent computations incur a
minimal amount of memory access. The new representation
highlights the most informative portions of the data, shrinking
the DL training and execution workload. As a result, mean-
ingful reductions in power and energy consumptions, memory
footprint, and training/execution runtime are achieved. Our
approach leverages the degree of freedom in producing several
possible projection subspaces to enable customizing TinyDL
with respect to the platform characteristics. We provide a sys-
tematic methodology to perform customization and projection
error tuning to achieve a target accuracy. Note that our signal
transformation is computed based on a streaming model which
evades the requirement to store the original ever-growing data
and incurs a fixed, low memory footprint.

II. TINYDL FRAMEWORK

TinyDL leverages the hybrid structure of a dataset modeled
as an ensemble of lower-dimensional subspaces to facilitate
DL training and execution on resource-constrained platforms.
TinyDL takes the stream of a large, dynamic dataset in



the matrix form as its input and adaptively maps the data
stream to a corresponding lower-dimensional embedding. As
illustrated in Figure 1, TinyDL consists of three main units: (i)
Automated customization, (ii) Signal transformation, and (iii)
Deep learning. We have developed a user-friendly API that
can be used to implement TinyDL on any CPU-only or any
combined CPU-and-GPU SoC platforms for rapid prototyping
of an arbitrary sensing application using DL models.
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Fig. 1: High level block diagram of TinyDL.

A. Signal Transformation

signal transformation is a pre-processing step in TinyDL
framework. Our goal is to tune TinyDL such that iterative deep
network training using the transformed signal becomes much
more efficient in terms of runtime, memory, and power com-
pared to the conventional scenario where the raw data is fed
into the DL model. Our key observation is that representing the
data as an ensemble of lower-dimensional subspaces facilitates
deep learning by (i) increasing the convergence rate, and (ii)
reducing the overall DL network size in terms of the required
number of neurons per layer.

To adaptively transform the stream of input data to a cor-
responding lower-dimensional embedding, TinyDL factorizes
the data matrix A into a product of a dictionary matrix and a
block-sparse coefficient matrix such that:

|A—DC||r subjectto [|C|lo < kn, (1)

minimize
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where A,,x, is the input data, D,,; is the dictionary ma-
trix, and Cjx, is the block-sparse coefficient matrix. ||C||o
measures the total number of non-zero elements in C, and
k is the target sparsity level for each transformed signal
(k < 1). We show that | < m < n can be achieved on
real-world large datasets. The dictionary size [ being less than
the feature space size m is particularly of interest as it could
be leveraged to adaptively transform the raw input data to
a lower-dimensional embedding. TinyDL tailors the solution
of Eq.1 for the underlying resource constraints to obtain the
most accurate model in each application. Our approach incurs
a low memory footprint and is well-suited for scenarios where
storage is severely limited.

For each newly arriving sample (a;), TinyDL first uses
the current values of the dictionary matrix D to calculate a
projection error denoted by Wy(a;). Next, it compares the
calculated error with a user-defined projection threshold « and
updates the corresponding lower-dimensional embedding if the
projection error is less than or equal to «. In TinyDL, the
dictionary matrix D is adaptively learned from the stream of
input data and each column of the coefficient matrix C' is

computed using a greedy routine called Orthogonal Matching
Pursuit (OMP). OMP is a well-known algorithm for solving
sparse approximation problems. It takes a dictionary D and
a sample a as inputs and iteratively approximates the sparse
representation of the sample by adding the best fitting element
in every iteration. Alg.1 demonstrates a pseudocode of the
classic OMP algorithm. In OMP method, k denotes the total
number of non-zeros per column of C' (a.k.a., sparsity level).
Once the block-sparse matrix C' is computed, it is used as the
input for training the selected DL network. Note that as we
explain in Section II-C, TinyDL is devised with an automated
resource-aware customization module that adaptively tunes
the transformation parameters such as dictionary size [, and
sparsity level k corresponding to the underlying constraints
such as memory bandwidth and pre-processing runtime.

Algorithm 1 : OMP Algorithm

Inputs: Dictionary matrix D, Sample column a, Spar-
sity level k.
Output: Coefficient vector c.

0+ a
AY 0
: for i = 1,...,k do _
AY — AT Uargmazx;| < T Dy > |, where j
ranges over all the column index values of the dictionary D
5: cpi < argming|ri=t — DAac||22, where ¢ is a vector
variable in R’
6: ri ¢ it
end for

b
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B. Customized Deep Learning

After pre-processing the incoming samples, a DL-based
classifier (e.g., Deep Neural Network (DNN)) is trained using
the low-dimensional embedding of the data. The goal in DL
training is to learn the weights and biases between layers
such that a loss function is minimized. In our evaluations, we
consider the Lo norm difference between network inferences
and the ground-truth labeled data as our loss function.

Training a DL model usually requires multiple paths through
the whole dataset and comprises two main steps: (i) forward
propagation, and (ii) backward propagation. In the forward
propagation step, the model’s response is computed based on
the current values of the network parameters:
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where a; "’ is the state of unit ¢ in layer s and f(.) denotes the

1(-1) is equivalent
to the #*" input feature. Wi(j) specifies the weight associated

with the connection between unit j in layer s and unit %
in layer s + 1, and b(s) indicates the bias associated with

unit ¢ in layer s + 1. In the backward propagation step, a
gradient descent based algorithm is applied to adjust (fine-
tune) network parameters. The training procedure continues

until a local optima is reached via the deep network.

non-linear activation function. For s = 1, a

DL Training Phase. Alg.2 provides the pseudocode of
TinyDL training phase. TinyDL requires only one pass through
each arriving sample to update the coefficient matrix C. In
Alg.2, npgtcn 1s a user-defined variable that controls the fre-
quency of updating the classifier based on the arriving rate of



training samples. After every npqtcp, new training data, TinyDL
updates the acquired DL model through multiple rounds of
forward and backward propagation using the expanded matrix
C that contains both the new and previously computed vectors.

The inputs of the DN N module include projected training
samples (matrix C), the corresponding label for the train-
ing samples (Lr), current network parameters param =
(weights, biases), and the number of units per layer
layergize. layerg;,. is a vector of integers whose first com-
ponent should be equal to [ (number of features in the block-
sparse matrix C'), and its last element indicates number of
classes according to the application. Each number in between
the first and last components of the layersy;.. indicates the
number of units per hidden layer in the chosen DNN topology.

Algorithm 2 : TinyDL (Training Phase)

Inputs: Measurement matrix (A), Transformation param-
eters (o, k, 1), Sample size (nepocn), Training labels (L),
and DL topology (layers;ze)

Output: Dictionary matrix D, coefficient matrix C, and
DL parameters param.

1: D « empty
2: param <— empty
3 j«<0
4: 1+ 0
5. while (true) do
C’i +~—0
if D is empty then
Wp(a,-) =1
else (Dt D)1t
10: Wy (a;) = [P g el
end if
11: if Wy(a;) >a and j <! then

12: D« [D,ai/+/llai|2]

R

13: Cij = Vllaill2
14: j—3+1
15: else
16: C, < OMP(D, a;, k)
end if
17: C <+ [C,C]
18: i+ 1
19: if i mod npaten == 0 then
20: param < DNN(C, param, layers;.e, L)

end w?ule

DL Execution Phase. Once the classifier is trained using
Alg.2, there are two main steps to predict the class label for
each data measurement in the execution phase: (i) Each test
sample is projected based on the learned dictionary matrix
D. (ii) The corresponding coefficient vector C; is fed into
the trained DL-based classifier to obtain the class label. The
execution phase only requires a forward propagation (Eq.2) for
each transformed data sample; thereby the execution latency
is proportional to the number of units per layer (layers;.e).

C. TinyDL Automated Customization

Our customization module aims to find an optimized set
of transformation parameters such that the DL training and
execution costs are significantly reduced while the inference
accuracy is minimally affected.

Memory Customization. The dictionary size indicated by [
is equal to the feature space size of the coefficient matrix
C (the input layer size of the DL network) and has a direct

effect on the memory storage and overall DL network size.
The memory footprint of the DL network is defined by
(ml + In + size(param)); I, m, and n are data-specific
variables while size(param) depends on the DL topology
(e.g., number of edges and units per layer). TinyDL adap-
tively tunes its dictionary size ! with respect to the input
feature space size m, and the available memory bandwidth
obtained by platform profiling. Note that the dictionary matrix
Dy« is constructed from carefully sampling columns of
the data matrix A,,x,. Thus, the column space of D is
contained in the column space of A, which in turn implies that
rank(DDVA) = rank(D) < 1 < m. Here, D" denotes the
pseudo-inverse of matrix D. This guarantees that the dictionary
matrix D at most consists of m samples.

Error Customization. The sparsity level £ has a signif-
icant impact on the ultimate inference accuracy and pre-
processing overhead. Many contemporary large datasets can
be represented by a composition (ensemble) of several lower-
dimensional subspaces. This composition of data can be ef-
fectively modeled by using a small subset of data as shown
in [2], [3], [4]. TinyDL uses a small subset of data (e.g., 5%)
to optimize its pre-processing parameters (e. g k) with respect
to different applications and resources provisioning.

Runtime Customization. Transformation overhead of each
newly arriving sample is a deterministic function of dictionary
size [, sparsity level k, and the input feature space size m.
TinyDL takes the user-defined runtime budget into consider-
ation and tunes the algorithmic parameters accordingly. The
runtime budget could be dictated either by the arriving rate of
sensor measurements or the buffer size for storing incoming
samples in the target platform.

III. EXPERIMENTS

All our design experiments are carried out on a constrained
embedded system named Jetson TK1. NVIDIA Jetson TK1 is a
full-featured platform for realizing computer vision, robotics,
security, automotive, and mobile sensing embedded applica-
tions [5]. It includes 192 CUDA cores and 4-Plus-1 quad-core
ARM Cortex A15 CPU with 2 GB memory. In our evaluations,
data transformation is performed by standard Message Passing
Interface (MPI) system using the 4 quad-core ARM processors
and the DL training and execution have been performed on
the available CUDA cores. We use TinyDL to realize three
different contemporary learning applications: (i) Smart sensing
[6], (ii) Indoor localization [7], and (iii) Speech recognition [8].

To evaluate TinyDL performance in presence of noisy sam-
ples, we perform three experiments using the smart-sensing
data with (i) No additive noise, (ii) Signal to Noise Ratio
(SNR) = 10, and (iii) SNR = 15. In these experiment, we
use £k = 20, and [ = 100 for signal transformation, while
each original input sample has 5625 features. Figure 2 shows
test error over time for three different input SNRs. As shown,
TinyDL is not sensitive to noisy inputs (less than 2% variation
in final inference accuracy) which makes it a suitable choice
for development of sensing inferences in presence of noisy
sensor measurements.

The graphs in Figure 2 illustrate that our data transformation
greatly speedups the DL training process, while it maintains
a competitive inference accuracy. This increase in the conver-
gence rate is mainly due to the block-sparse structure of matrix
C that facilitates deep learning by effectively representing data
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Fig. 2: Inference error over time for different input SNRs. The sparsity level for transformed data is set to be k = 20, and the
dictionary size is [ = 100. The reported time correspond to TinyDL runtime on the GPU of Jetson TK1 board.

as an ensemble of lower-dimensional subspaces. As the dic-
tionary evolves over time, it better captures dynamic structure
of data, and subsequently increases the error reduction rate in
TinyDL. In addition, our data transformation also enables us to
achieve the same level of accuracy by utilizing smaller number
of units per layer compared to the conventional scenario where
the raw data is fed to the DL network. This reduction in the
overall DL network size translates to a lessening in resource
utilization as well as training and execution latency.

Table I elaborates the effectiveness of TinyDL in realiz-
ing various DL-based robotic and sensing applications on a
resource-constrained device. To boost the inference accuracy
and avoid over-fitting, we employ dropout technique [9] in
our baseline implementation. Stochastic gradient descent with
momentum [10] is used for back-propagation. We report
performance improvement achieved as a result of TinyDL pre-
processing compared to the conventional approach where raw
data features are used of DL training.

TABLE I: Performance improvement achieved by TinyDL over
conventional deep learning approach.

Applicati Pre-processing Training | Training | Execution | DL Network Size
pplication Overhead Energy Runtime Runtime Reduction

Smart Sensing 0.81 ms/sample 99.6 X 20.9% 108.3x 120.3x

Indoor Localization 0.09 ms/sample 5.6 2.7 19.4x 19.5x

Speech Recognition | 0.56 ms/sample | 4.2X 2.3x 6.2 7.3%

IV. RELATED WORK

There are some early examples of DL being applied in
mobile settings including the speech recognition models used
by phones today [11]. Such models, however, operate entirely
off-device in the cloud and have not exploited the com-
putational resources available on current mobile devices. A
recent work [12] investigates the potential of using DL as an
alternative approach for commonly used learning models such
as GMM, SVM, or DT in mobile sensing applications. This
work demonstrates that execution of DNN can incur resource
overhead close to the simplest comparison models such as DT
(which does not have a high accuracy), yet simultaneously
have accuracy levels equal to the best tested alternatives (e.g.,
GMM, or SVM). However, even [12] leaves training of such
deep networks for the clouds and only focuses on local usage
of the trained DNNs for classification.

In our recent work [3], [13], [14], we corroborate how the
use of resource-aware data transformation as a pre-processing
step can be leveraged to customize DL training and execution
workload in accordance to the underling resource provisioning.
TinyDL is developed based on a novel extension of our
proposed method in [3], [13], [14]. In particular, TinyDL
further reduces the complexity of signal pre-processing by

greedily select the best fitting dictionary samples to project
each newly arrived data while delivering the same accuracy.

V. CONCLUSION

This paper presents TinyDL, a novel end-to-end framework
for realization of sensing and understanding tasks on resource-
constrained platforms using DL models. TinyDL adaptively
learns and customizes the hybrid structure of the streaming
input data to improve system performance in terms of memory,
power, energy consumption, and training runtime. We evaluate
TinyDL on three contemporary sensing applications including
smart sensing, indoor localization, and speech recognition.
Our experiments demonstrate up to 100-fold improvement in
comparison with the best known prior solutions, none of which
were implemented on a mobile platform due to the demanding
computational overhead associated with DL methods.
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